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A Sparse-View CT Reconstruction Method
Based on Combination of DenseNet

and Deconvolution
Zhicheng Zhang, Xiaokun Liang , Xu Dong, Yaoqin Xie, and Guohua Cao

Abstract— Sparse-view computed tomography (CT)
holds great promise for speeding up data acquisition and
reducing radiation dose in CT scans. Recent advances
in reconstruction algorithms for sparse-view CT, such as
iterative reconstruction algorithms, obtained high-quality
image while requiring advanced computing power. Lately,
deep learning (DL) has been widely used in various
applications and has obtained many remarkable outcomes.
In this paper, we propose a new method for sparse-view CT
reconstruction based on the DL approach. The method can
be divided into two steps. First, filter backprojection (FBP)
was used to reconstruct the CT image from sparsely
sampled sinogram. Then, the FBP results were fed to a DL
neural network, which is a DenseNet and deconvolution-
based network (DD-Net). The DD-Net combines the
advantages of DenseNet and deconvolution and applies
shortcut connections to concatenate DenseNet and
deconvolution to accelerate the training speed of the
network; all of those operations can greatly increase
the depth of network while enhancing the expression
ability of the network. After the training, the proposed
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DD-Net achieved a competitive performance relative to
the state-of-the-art methods in terms of streaking artifacts
removal and structure preservation. Compared with the
other state-of-the-art reconstruction methods, the DD-Net
method can increase the structure similarity by up to 18%
and reduce the root mean square error by up to 42%.
These results indicate that DD-Net has great potential for
sparse-view CT image reconstruction.

Index Terms— Sparse-view CT, CT reconstruction, deep
learning, DenseNet, deconvolution.

I. INTRODUCTION

S INCE its invention [1], [2], X-ray Computed Tomogra-
phy (CT) as a tool to achieve “inner vision” [3] has been

widely utilized in clinical, industrial and other applications [4].
With the broadened application of CT in clinics, however,
the associated x-ray radiation dose which may potentially
induce lifetime risk of cancers has attracted wide public
attention [5]. As a result, the demand for radiation dose
reduction techniques becomes more necessary [6] under the
principle of ALARA (as low as reasonably achievable) [7].
Since x-ray imaging is mainly a photon-noise dominated
process [8], reducing the x-ray exposure will lead to image
degradation under other identical conditions. Balancing image
quality and x-ray dose level has become a well-known trade-
off problem in CT.

There are two common strategies to lower x-ray radiation
dose. The first strategy is to lower the x-ray exposure in each
view [8]–[10], by adjusting the tube current or exposure time
of an x-ray source. This practice has been well performed
but will produce noisy projections. The other strategy is to
decrease the number of projections for a given scanning
trajectory [11]–[13]. However, it will lead to the problem of
insufficient projection data, to the extent that sparse-view CT
will suffer from severe streaking artifacts [14]. On the other
hand, sparse view CT from limited-angle CT data acquisition
causes image distortion and other problems [15]. In this work,
we focus on the strategy for obtaining a high-quality CT image
from sparse-view CT with sufficient scanning angle.

Many algorithms have been proposed for sparse-view CT
image reconstruction. They can be grouped into three cate-
gories. The first category can be classified as sinogram com-
pletion. Its key idea is to complement the sparse projections
before reconstructing them with analytical algorithms, such
as FBP. Li et al. [16] proposed a dictionary-based sinogram
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completion method to in-paint the missing sinogram data by
applying K-SVD algorithm [17], with database composed of
the patches from simulated CT sinogram. Lee et al. [18]
applied a convolution neural network (CNN) [19] to inter-
polate the missing data in sinogram from sparse-view CT, by
utilizing residual learning for better convergence and using
patch-wise training of the network to avoid memory overload.
The second category of reconstruction algorithms for sparse-
view CT is iterative reconstruction (IR). This category of
reconstruction methods is in explosive growth due to the recent
availability of high computing power in personal worksta-
tions [20]. With the emergence of compressed sensing (CS)
in 2006 [21], [22], not only the statistical properties of data
in projection domain but also lots of prior information in the
image domain, such as sparsity in gradient domain [11] and
low rank [23], have been taken into account into the IR
methods. They can greatly improve the reconstructed image
quality. Kim et al. [24] employed reweighted non-local total-
variation (R-NLTV) to replace total variation (TV) [11] to
preserve image details. Niu et al. [25] took full advantage
of statistical properties of data in the projection domain and
total generalized-variation regularization to avoid the blocky
effect. Nien and Fessler [26] and Kim et al. [27] combined
statistical properties of data in the projection domain with
edge-preserving regularization and proposed corresponding
acceleration technique. The last category of reconstruction
algorithms for sparse-view CT is image post-processing. After
reconstruction with analytical algorithm (such as FBP) from
sparse-view CT projection data, streaking artifacts will be
present in the CT images. The removal of streaking artifacts
can be readily converted into an image post-processing prob-
lem. In this category of reconstruction methods, the iterative
reconstruction in image space (IRIS) by Siemens [28] can
achieve excellent performance. Han et al. [29] took the infor-
mation from other energy bins in spectral CT into account
and employed annihilating filter-based low-rank Hankel matrix
approach (ALOHA) to restore CT images reconstructed from
sparse-view CT.

Very recently, several deep-learning (DL) based algo-
rithms [30] have been applied to CT reconstruction. For
instance, Würf et al. [31] and Ma et al. [32] employed
neural networks to express CT image reconstruction.
Cheng et al. [33] simulated the iterative reconstruction process
using a DL-based leapfrogging strategy. Analysis et al. [34]
developed a deep residual learning network based approach
for sparse-view CT reconstruction via the persistent homology
analysis; it showed that the residual image composed of
only streaking artifacts is much simpler than the original
CT images. Jin et al. [35] proposed a deep convolutional
network (FBPConvNet) that combines FBP and U-net, and
made full use of multi-resolution CNN [36] and residual
learning [37]. The image reconstruction for sparse-view CT
has also been investigated with RED-CNN, which is based
on the combination of deconvolution network and shortcut
connections [4]. A forward-thinking review has been published
on the subject of applying deep learning for CT [38].

In this work, a new DL based reconstruction method for
sparse-view CT is proposed. It can outperform the other

methods in terms of computational efficiency and image
quality. The new method includes two steps. First, FBP was
utilized to reconstruct CT images from sparsely sampled
projection data from sparse view CT. As expected, the CT
images were full of streaking artifacts. Next, the FBP images
were enhanced by an end-to-end neural network that takes
full advantage of DenseNet [39] and deconvolution [40]
(hereafter the network is referred as DD-Net). The DD-
Net reconstruction method takes advantage of the classical
FBP reconstruction technique, which is an analytical process
and can be calculated efficiently, and the DL based image
optimization approach, which is known to be capable of
efficiently learning low-level and high-level common features
from dataset through a multi-layer network [30].

The detailed reasoning for choosing this particular DL
neural network, as well as its advantages in image enhance-
ment, can be found in the Result and Discussion sections.
Here, we provide a brief summary on the advantages of the
DD-Net. For any DL-based image enhancement tasks, there
are two important procedures: feature extraction and image
restoration. For feature extraction, to obtain more feature-
maps from low-level image edges to high-level object features,
the size of neural network (NN) needs to increase. However,
increasing the network size will lead to many other prob-
lems, including network training difficulty due to gradient
vanish or explosion, and increased number of model para-
meters, etc. In DD-Net, these problems can be overcome by
feature reuse, which can make the network more condensed,
easily trained, and parameter-efficient. For image restoration,
the deconvolution layers employed in the DD-Net network are
effective, because they can use every point in the front layer to
restore details in an area in later layers. Furthermore, the DD-
Net uses shortcut connections to concatenate the DenseNet and
deconvolution layers, which can greatly improve the training
of the network.

Section II introduces the proposed reconstruction frame-
work, and experimental results are described in section III.
Discussion and conclusion are in section IV.

II. METHODS

A. Method Overview

The universal approximation theorem [41] states that a
feedforward neural network with at least one hidden layer
can approximate continuous functions. Although the exact
theoretical foundation is not well understood, neural net-
works seem to be capable of representing a wide variety of
interesting functions as long as parameters in the network
were set appropriately. It is well known that sparse-view CT
reconstruction with FBP will lead to lots of steaking artifacts
in CT image X due to missing data in some scanning angles.
To transform X into a high-quality CT image Y, the task
can be converted to search for a function f according to
the equation: Y = f(X). This equation can be represented by
a neural network according to the universal approximation
theorem. In a high level, our method can be interpreted as
the following figure.



ZHANG et al.: SPARSE-VIEW CT RECONSTRUCTION METHOD BASED ON COMBINATION OF DENSENET AND DECONVOLUTION 1409

Fig. 1. Framework of the proposed sparse-view CT reconstruction
method. Projection data from sparse-view CT are first reconstructed
using FBP, and then the FBP reconstructed image is improved using
a neural network (DD-Net).

1) DD-Net: The neural network used for image enhancement
is constructed mainly based on the combination of DenseNet
and deconvolution. The corresponding neural network archi-
tecture of the DD-Net is illustrated in Figure 2. It consists
of 45 layers, including 4 dense blocks (i.e., the cells of
DenseNet), 8 deconvolution layers, 5 convolution layers, and
other operators such as batch normalization (BN) [42] and
rectified linear unit (ReLU) [43], as well as pooling operators
for more advanced feature-mapping (All parameters are deter-
mined experimentally as seen in section III.B). Deconvolution
network consists of the remaining deconvolution layers and
unpooling operators to restore a high-quality image from the
extracted feature-maps. Shortcut connections are applied to
concatenate the results from the front part of the DenseNet to
the later parts of the deconvolution network. The ends of a
concatenation must have the same image size. In Figure 2,
the red dot-dashed box A consists of a pooling operator,
a dense block, and a convolution layer; the green dot-dashed
box B encloses an unpooling operator and two deconvolution
layers. The proposed DD-Net works in the image domain, with
the FBP reconstructed CT image as the input.

2) Dense Block: Dense blocks are the cells of DenseNet.
One major difference between DenseNet and the previous
neural networks (e.g., ResNets [37], Highway network [44]
and FractalNets [45]) lies in the dense connections between
different layers within a dense block. Within a dense block,
feature-maps produced from all its previous layers are con-
catenated as the input for the subsequent layer. Furthermore,
the inputs of all layers are modified by the dense connections.
As a result, each layer in the dense block can benefit from both
the low-level features and the high-level features produced
before it in the feedforward setting, mitigating the risk of
exploding or vanishing gradients [43], [46]. This design also
allows the gradients to be sent to their respective places
in the network more quickly in the feedbackward situation.
The layout of the dense block is illustrated in Figure 3.

Another main difference between DenseNet and the pre-
vious neural networks (e.g., ResNets, Highway network and
FractalNets) is feature reuse. Feature reuse means that the
feature-maps learned from all previous layers are concatenated
with the feature-map learned from the current layer as the
input for the subsequent layer. Compared to previous neural
networks such as ResNets, Highway network, and FractalNets,
feature reuse greatly reduces the number of parameters and
improves parameter utilization. In a dense block, any two

adjacent layers are directly connected by multiple operations
such as batch normalization (BN) [42], rectified linear unit
(ReLU) [43], and convolution layers. A 1×1 convolution layer
is also introduced to decrease the number of input feature-
maps due to too many input features after concatenations,
resulting in improved computational efficiency [47]. Motivated
by [46], every L layer consists of BN-ReLU-Conv (1×1)-BN-
ReLU-Conv (5 × 5). Here, batch normalization can normalize
corresponding feature-maps, x , to a particular distribution of y,
using the formula y = γ (x − μ) /δ +β, where μ is the mean
value of x , δ is the variance of x , γ is the scale factor, and β
is the offset value. More details about the batch normalization
can be found in [42]. In our work, we followed the formula
in [42] and processed each channel of the integrated features
after concatenation. Conv (n × n) stands for two-dimensional
convolution operation using convolution filter with size n ×n.
If each layer Li has k feature-maps as output, there are
k × (i − 1) + k0 input feature-maps, where k0 is the number
of channels of input. In this paper, all the parameter strides of
convolution and deconvolution are set to 1.

3) Deconvolution Network: For DenseNet, pooling operators
and dense blocks are utilized interchangeably to extract the
major features in [39], effectively ignoring image details. This
approach is related to traditional object classification. The key
idea of object classification is to extract common features for
the same kind of objects and then the output is the identi-
fication probability [39] or location [48] or boundary [36] of
objects. However, the task of image optimization in the second
step of our proposed reconstruction method for sparse-view
CT is an end-to-end regression problem. The output is a high-
quality CT image.

Deconvolution can be viewed as the reverse version of
convolution. In this work, the deconvolution network consists
of unpooling operators and deconvolution layers. The deconvo-
lution network reconstructs images from the extracted features
obtained from the DenseNet. It has two purposes: keeping the
size of output image consistent with the size of input image
and restoring a high-quality image from extracted features.

After feature extraction, many features of different sizes are
obtained. To restore a high-quality image with the same size as
the input image, the first step is to adopt an unpooling operator
to enlarge features size using interpolation. Then, feature-maps
with the same size produced in the front layers are introduced
to the deconvolution network via shortcut connections.

To restore image details, there are two deconvolution layers:
Deconv (5×5)-ReLU-BN and Deconv (1×1)-ReLU-BN. Here,
Deconv (n × n) stands for two-dimensional deconvolution
operation using a filter with size n × n. Each deconvolution
layer allows each point in the front layer to be ‘deconvoluted’
to an area in the back layer whose size equals the size of
the deconvolution filter. This process is capable of bringing
the image details back to the output images, and hence
helps to generate high-quality CT image from extracted fea-
tures produced from the DenseNet. Previously, deconvolution,
in combination with convolution, has been applied successfully
in sematic segmentation problems [47], [49], [50].

4) Shortcut Connections: Shortcut connections play a sig-
nificant role in the DD-Net. There are two kinds of shortcut
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Fig. 2. The corresponding network architecture of the DD-Net.

Fig. 3. A dense block with 4 L layers. Each L layer concatenates all preceding features together as its input.

connections: local shortcut connections within a dense block
in the DenseNet and global ones between DenseNet network
and deconvolution network. In previous deep neural networks
such as ResNets, Highway network and FractalNets, shortcut
connections from early layers to later layers are adopted
to improve information flow to reduce the network training
difficulty and avoid the gradient vanish or explosion, while
simultaneously it helps to increase the depths or widths of
the neural networks and improve results. In the same fashion,
the paper uses shortcut connections in the DenseNet to obtain
the same benefits.

With increase in the depth of neural network, the extracted
features are more and more abstract. The extracted features
keep only the main body structures of the CT image and lose
the small textures. This problem can be addressed with the
global shortcut connections by concatenating more features
from the DenseNet network to act as input to the deconvolu-
tion network. In addition, when the network depth increases,
the shortcut connections also help to suppress the gradient
instability and make training the network a lot easier.

B. Network Parameter Selection

The proposed DD-Net is an end-to-end convolution neural
network. It takes the CT images reconstructed with the FBP

algorithm as the input. The input image is fed to a 7 × 7
convolution layer, followed by l (the number of denseblocks)
A networks (marked as the red dot-dashed box in Figure 2)
and l B networks (marked as the green dot-dashed box
in Figure 2). In this paper, 2 × 2 MaxPooling and unpooling
operators are employed before each dense block and the n ×n
(filter size) deconvolution layers, respectively. The 1 × 1 con-
volution layer and deconvolution layers are adopted after each
dense block and the n × n deconvolution layers, respectively,
to decrease the number of input feature-maps. In each dense
block, h (the number of layers in a denseblock) L layers
are used, and each L layer consists of Conv(1 × 1) and
Conv(n × n). Shortcut connections are used to concatenate
the output of A networks and the output of the unpooling
operators. The parametric structure of all layers in the DD-Net
is shown in Table 1. Because different parameter selections
will lead to different performance, in this study we also tested
the effects of different parameters on the performance of the
network.

C. Network Training

Training the DD-Net network is essential to find a mapping
function that improves the quality of FBP reconstructed CT
images from sparse-view CT. Once the architecture of the
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TABLE I
PARAMETRIC STRUCTURE FOR ALL THE LAYERS IN THE DD-NET

network is fixed, all the parameters can be estimated using
backpropagation algorithm (BP) [51] by optimizing a loss
function. Although the MSE (mean square error) loss function
as fidelity term is widely used, it may blur edges, lose
details, and ignore image structures [52]. Multi-scale structure
similarity (MS-SSIM) [53] has been proposed to preserve the
global structure similarity between images. Here, we use a
mixed loss function that combines the MSE and MS-SSIM
terms. It can be written as follow:

L = ||Y − f (X)||22 + αLM S−SS I M(Y, f (X))

where ||Y − f (X)||22 is the MSE term, LM S−SS I M is the
MS-SSIM term, and α is the weighting factor for the
MS-SSIM term; we used α = 0.1.

The DD-Net was trained by the Adam algorithm [54].
The learning rate was initially set at 10−4 and slowly decreased
continuously down to 10−5. The size of mini-batch was 5. DD-
Net was implemented using Tensorflow [55] on a personal
workstation with Intel Core i5-7400 CPU and 16GB RAM.
A GPU card (Nvidia GTX Titan X) accelerated the training
process. All the convolution and deconvolution filters were
initialized with random Gaussian distributions with zero mean
and 0.01 standard deviation.

D. Datasets

A total of 3059 two-dimensional CT images of 512 × 512
pixels per image were obtained. The CT images were acquired

Fig. 4. Example CT slice images used for training and testing the DD-Net.

from several parts of human body. Figure 4 illustrates some
examples. From those original CT images, projection data
were generated using the Beer’s law under the assumption
that the x-ray source was monochromatic at 60 keV. In the
forward projection, Siddon’s ray-driven forward projection
method [56] was used, and Poisson noise was added according
to formula Pi ∼ Poisson

{
bi e−li

}
, i = 1, . . . , N , where Pi is

the detector measurement along the i th ray path, bi is the blank
scan factor, and li is the line integral of attenuation coefficients
along the i th ray path. No electronic readout noise was simu-
lated. The Poisson noise (and hence dose) level can be adjusted
by setting the number of photons per ray for the blank scan
factor bi . In this study, bi was uniformly set to 106 photons
for each ray and denoted as bi = b0 = 106, i = 1, . . . , N .
Then, the sparse-view CT images with streaking artifacts were
reconstructed using the FBP algorithm. The distance between
source and detector was 1500 mm, and the distance between
source and rotation center was 1100 mm. For each sparse-
view CT, projections were gathered every three degrees in the
fan-beam geometry and a total of 120 projections were used
for reconstruction for each CT image. To train and verify the
DD-Net, we divided all CT images into three sets: the training
set, the validation set, and the testing set. The training set is
a group of 2425 CT images downloaded from The Cancer
Imaging Archive (TCIA) (about 16% head, 39% chest, 34%
abdomen and 11% hip) [57]. The validation set is a group of
163 CT images downloaded from TCIA (about 14% head, 33%
chest, 25% abdomen and 28% hip). The testing set is a group
of 471 CT images downloaded from the National Biomedical
Imaging Archive (NBIA) (about 22% head, 35% chest, 35%
abdomen and 8% hip) [58]. The three datasets have different
images.

E. Evaluation Methods

In this study, two CT images (one from the chest region
and one from the hip region) were randomly selected from the
testing datasets to evaluate the performance of the proposed
reconstruction method. The same two CT images were recon-
structed by two other reconstruction methods (PWLS-TGV
method [25], and R-NLTV method [24]), to compare with



1412 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 37, NO. 6, JUNE 2018

Fig. 5. Reconstruction results from the chest CT dataset. (A) Original
image, (B) FBP, (C) PWLS-TGV, (D) R-NLTV, (E) DD-Net. Display
window was set at [0, 0. 029] mm−1.

the state-of-the-art reconstruction algorithms for sparse-view
CT in literature. Both CT images were reconstructed from the
120 projections generated from the forward projection using
the PWLS-TGV, R-NLTV and DD-Net. The initial value for
all the methods was the FBP reconstructed CT image.

Image assessments were carried out qualitatively, such
as visual inspections and line intensity profile comparisons,
as well as quantitatively, such as comparisons for root-mean-
square error (RMSE) and structural similarity (SSIM). Har-
alick texture features [59], [60] were also used to quantify
the capability of texture preservation. All 14 Haralick texture
measures were calculated from each entire image. Then,
the Euclidean distance between the textures of the original CT
image and a newly reconstructed CT image was calculated as a
quantitative measure [61]. The shorter the Euclidean distance,
the better the texture preservation.

To test the performance of the reconstruction algorithms
in various sparse-view-sampling conditions, CT images were
also reconstructed with 60, 72, 90 and 180 projections and
analyzed qualitatively as well as quantitatively.

III. RESULTS

A. Experimental Results

1) Chest CT Image: Figure 5 shows the results from the
chest dataset. As expected, severe streaking artifacts can be
observed in the FBP reconstructed CT image in Figure 5 (B).
For the PWLS-TGV and R-NLTV methods, there are trade-
offs between the effect of artifact removal and image reso-
lution. We tried our best to tune the parameters under the
suggestions from the original papers to preserve image details
as much as possible. From (C) to (E), it can be seen that
the streaking artifacts were suppressed to different degrees by
different methods. Through visual inspection, DD-Net is best
for artifact removal and preserving small features.

Figure 6 shows the zoomed regions marked by the dashed
red box in Figure 5 (A). Compared to PWLS-TGV, the image
from DD-Net has more well-defined boundaries and more
details. Compared to R-NLTV, DD-Net is better at suppressing

Fig. 6. The zoomed regions marked by the red box in Figure 5 (A).
(A) Original image, (B) FBP, (C) PWLS-TGV, (D) R-NLTV, (E) DD-Net.
The red arrows show the locations of the small features, and the blue
arrow indicates the boundary between two soft tissues. Display window
was set at [0.00164, 0. 0287] mm−1.

TABLE II
QUANTITATIVE RESULTS FROM THE DIFFERENT RECONSTRUCTION

ALGORITHMS FOR THE CHEST CT IMAGE

the image noise. All three methods somewhat smoothened out
the small features indicated by the red arrows in Figure 6 (A).
However, the DD-Net method performed slightly better than
the PWLS-TGV and the R-NLTV methods, and retained part
of those small details. The boundary between the two soft
tissues marked by the blue arrow in Figure 6 (A) is still
visible in the CT image from the DD-Net method, while it
is more blurry in the CT images from the FBP, PWLS-TGV,
and R-NLTV methods.

Quantitative analysis for the entire chest CT image recon-
structed using these methods has also been carried out and the
results are shown in Table 2. DD-Net clearly outperformed
the other methods and produced the highest SSIM and lowest
RMSE. The Haralick measure for the DD-Net image had fallen
by about 48% compared to the result from FBP. The smallest
Haralick measure for the DD-Net image indicates that the DD-
Net has the strongest capability of texture preservation.

Figure 7 plots the 1D line intensity profile passing through
the red dashed line in Figure 5 (A). It compares the same line
intensity profiles from the CT image reconstructed by various
methods. Through visual inspection, it is clear that the line
intensity profile from our proposed method resembles most
closely to the one from the original CT image. The comparison
demonstrated the advantage of the proposed reconstruction
method over the other iterative reconstruction algorithms on
edge preservation.

To better illustrate the effectiveness of artifact removal
by DD-Net, Figure 8 shows the absolute difference images
relative to the original CT image in Figure 5 (A). It is clearly
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Fig. 7. 1D intensity profile passing through the red dashed line
in Figure 5 (A). The insets clearly show the better performance from
the DD-Net compared to the other methods.

Fig. 8. The absolute difference images between the original CT image
and the CT images reconstructed from the different algorithms: (A) FBP,
(A1) enlarged area marked by orange box and (A2) enlarged area marked
by red box; (B) PWLS-TGV, (B1) and (B2) are corresponding enlarged
areas; (C) R-NLTV, (C1) and (C2) are corresponding enlarged areas; and
(D) DD-Net, (D1) and (D2) are corresponding enlarged areas. Display
window was set at [0, 0.008] mm−1. A larger view of the figure is available
in the supplemental document.

observed from the enlarged area marked by red and orange
boxes in Figure 8 (A) that DD-Net has the smallest difference,
and the results in Figure 8 (C) and (D) still include visible
streaking artifacts and other structures. In Figure 8, the darker
the color, the smaller the error.

2) Hip CT Image: For the hip CT image, results recon-
structed from the different reconstruction methods are shown
in Figure 9. It can be observed clearly that all the methods
(PWLS-TGV, R-NLTV, and DD-Net) can suppress streaking
artifacts. However, the result from the PWLS-TGV method
suffered a bit from over-smoothing, and the streaking arti-
facts have not been completely eliminated from the R-NLTV
method.

To show the performance of different reconstruction meth-
ods at local regions, ROIs as marked by the blue dashed

Fig. 9. Results from the hip dataset. (A) Original image, (B) FBP,
(C) PWLS-TGV, (D) R-NLTV, (E) DD-Net. Display window was set at
[0.012, 0.029] mm−1.

Fig. 10. The zoomed region marked by the blue box in Figure 9 (A).
(A) Original image, (B) FBP, (C) PWLS-TGV, (D) R-NLTV, (E) DD-Net.
Display window was set at [0.012, 0.029] mm−1.

TABLE III
QUANTITATIVE RESULTS FROM DIFFERENT RECONSTRUCTION

METHODS FOR THE HIP CT IMAGE

rectangle in Figure 9 (A) are enlarged to compare them
in details in Figure 10. The quantitative results for the entire
hip CT image reconstructed using these methods are listed
in Table 3. It is clear that DD-Net performed better than the
other methods in a trend similar to what we have seen from
the chest CT image.

B. Network Parameter Tuning

The DD-Net has several parameters to be optimized, includ-
ing the number of denseblocks l, the number of layers in a
denseblock h, the number of filters k, and the filter size n.
The optimum value for each parameter was determined by
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Fig. 11. RMSE and SSIM results on the validation dataset during the
network trainings. The display ranges of RMSE and SSIM are [0, 0.02]
and [0.2, 1], respectively.

Fig. 12. RMSE and SSIM results on the validation dataset during the
network trainings. The display ranges of RMSE and SSIM are [0, 0.02]
and [0.2, 1], respectively.

Fig. 13. RMSE and SSIM results on the validation dataset during the
network trainings. The display ranges of RMSE and SSIM are [0, 0.02]
and [0.2, 1], respectively.

Fig. 14. RMSE and SSIM results on the validation dataset during the
network trainings. The display ranges of RMSE and SSIM are [0, 0.02]
and [0.2, 1], respectively.

perturbing one parameter while keeping the others fixed and
analyzing the resulted quantitative performance in the recon-
structed CT images for the validation dataset. The average
RMSE and SSIM values of all the CT images in the validation
set were calculated to plot the curves in Figures 11-16.

1) Number of Denseblocks: For this parameter, we changed
l into three possible values: 3, 4 and 5. The corresponding
results are shown in Figure 11. It can be seen that the RMSE
and SSIM become better from 3 blocks to 4 blocks, while they
become slightly worse from 4 blocks to 5 blocks. One possible

Fig. 15. RMSE and SSIM results on the validation dataset during
network trainings. The display ranges of RMSE and SSIM are [0, 0.02]
and [0.2, 1], respectively.

Fig. 16. RMSE and SSIM results on the validation dataset during the
network trainings. The display ranges of RMSE and SSIM are [0, 0.02]
and [0.2, 1], respectively.

explanation is that as the depth of the network increases, more
training samples are needed to avoid overfitting. Therefore,
we determined that the best number of denseblocks l is at 4.

2) Number of Layers in One Denseblock: Different h (3,
4 and 5) were tested. We changed the number of layers
in one denseblock and trained the networks under the same
other conditions. The results are shown in Figure 12. As the
number of layers in one denseblock was increased from 3 to 4,
the performance was improved. While when h was increased
from 4 to 5, the performance was barely changed. Meanwhile,
the training time and the number of parameters in the neural
network will significantly increase. Therefore, we determined
that the best number of layers in one denseblock h is at 4.

3) Number of Filters: A comparative trial on the number of
filters has been carried out. We found that the performance is
best when k = 16, as shown in Figure 13. The potential expla-
nation is that as the width of the network increases, the number
of parameters on the network increased significantly. It may
be more difficult to converge. Therefore, we determined that
the best number of filters k is 16.

4) Impact of Filter Size: Convolution neural networks differ
from other neural networks by introducing the concept of
receptive field (i.e., filters). The filter size affects the per-
formance of CNNs. Larger n will help extract more abstract
feature-maps but it leads to the loss of many details and the
increase in the number of parameters. From the experimental
result shown in Figure 14, network with 5×5 filters outperform
others with 3 × 3 and 7 × 7 filters. Therefore, we determined
that the best filter size n is 5.

C. Computational Cost

Computational cost is an important factor for any recon-
struction algorithm. All the algorithms were carried out with
Matlab except the DD-Net, which was implemented with
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TABLE IV
QUANTITATIVE RESULTS FROM DIFFERENT RECONSTRUCTION

METHODS USING DIFFERENT NUMBERS OF PROJECTIONS

Python. The training process for a DL method is very time-
consuming. Although the algorithms were realized using dif-
ferent programming languages, the efficiency can be roughly
compared on a same computer. In this study, the average
computing time for FBP, PWLS-TGV, R-NLTV, and DD-
Net (after training) is 1.2, 424.5, 613.5, and 1.3 seconds per
CT slice, respectively. As can be seen, once DD-Net is fully
trained, it owns a considerable advantage in computational effi-
ciency compared to the other iterative reconstruction methods.

In this study, after the DD-Net was trained using the training
set, FBP reconstruction from a sparse-view CT with 120
projections was used as the input for the DD-Net. However,
in actual application, one will not always collect 120 projec-
tions in all situations. To verify the robustness of the DD-Net,
four other tests have been carried out using FBP reconstructed
chest CT image from 180, 90, 72 and 60 projections using
the same well-trained DD-Net, respectively. These results are
shown in Table 4. With only 60 projections, PWLS-TGV
outperformed other methods in terms of the quantitative
metrics (RMSE and SSIM). In other cases, DD-Net always
obtained the best results. We think this can be explained by
the fact that the DD-Net method only works in the image
domain and it utterly relies on the results from the FBP
reconstruction. For better demonstration, corresponding CT
image appearance for the different number of projections is
included in supplement materials. Supplementary materials are
available in the supplementary files /multimedia tab.

IV. DISCUSSION AND CONCLUSION

In this paper, we described an image reconstruction
method for sparse-view CT. The method is based on a DL
neural network that combines DenseNet and deconvolution.
The DenseNet and deconvolution were united with shortcut
connections, such that an end-to-end network – DD-Net – was
formed to significantly increase the depth and the expression
ability of the network. The network takes a FBP reconstructed
CT image from sparse-view CT as input and tries to produce
an enhanced, artifact-free CT image. We trained the neural
network using a training set, and applied the well-trained
neural network to two sets of clinical CT data acquired
from different parts of human body. The results show that
the proposed method can effectively suppress the streaking
artifact induced by missing data from sparse-view CT, and
can partially recover image details for sparse-view CT.

Conventional iterative reconstruction algorithms have been
extensively used in image reconstruction for sparse-view CT.

When compared traditional reconstruction algorithms such
as FBP, iterative reconstruction algorithms exhibit signif-
icant image improvement. For instance, PWLS-TGV [25]
and R-NLTV [24] can outperform FBP or SART-TV [11].
Nevertheless, through our experiments, PWLS-TGV suffers a
bit from over-smoothing, and R-NLTV still shows unsatisfac-
tory noise suppression effect.

Compared to the other reconstruction methods for sparse-
view CT, the DD-Net method has its own advantages. Com-
pared to PWLS-TGV and R-NLTV, DD-Net can increase
SSIM by up to 18% and reduce RMSE by up to 42%, for
sparse view CT with 120 projections. Compared to the popular
iterative reconstruction algorithms, the DD-Net method is
much faster, although it takes time to train the network. Once
the DD-Net neural network has been trained, the computa-
tion time for CT reconstruction using the trained network
is just about 1 second per slice on a PC workstation (Intel
Core i5-7400 CPU, 16GB RAM and Nvidia GTX Titan X
GPU card). In comparison, the average computing time for
PWLS-TGV and R-NLTV is 425.5 and 613.5 seconds per CT
slice, respectively.

In this work, we used deconvolution layers to restore CT
images from extracted feature-maps. It has been previously
demonstrated that convolution has excellent performance on
image restoration from extracted feature-maps [35], [62], [63].
To examine the difference between deconvolution and convo-
lution, we replaced the deconvolution layers by convolution
layers in the DD-Net, and then trained the new network using
the same training datasets. We then evaluated its sparse-view
CT reconstruction at each epoch (defined as a single forward
and backward pass of all the training datasets through the
entire network). We compared the image quality (in terms of
the average values of RMSE and SSIM of all the CT images
in the validation set) of the sparse-view CT image at each
epoch from the two network versions. The comparison results
are shown in Figure 15. It can be seen that DD-Net with
the deconvolution layer outperformed the counterpart with
convolution layer.

In DD-Net, the shortcut connections to concatenate
DenseNet and deconvolution layers played a significant role
during network training. The influence of shortcut connections
on the DD-Net was evaluated in a way similar to the one used
to evaluate the effect of deconvolution versus convolution,
by comparing the quality of a sparse-view CT image at each
epoch of the two network versions with and without shortcut
connections. The results are shown in Figure 16. It can be
seen that significantly better RMSE and SSIM results can be
obtained with shortcut connections. One potential explanation
is that shortcut connections improve the information flow and
shorten the distance between input and output, and all layers
receive additional supervision from the loss function through
the shortcut connections.

In this study, the outcomes of the DD-Net method heavily
depend on the FBP reconstruction results, which were fed as
inputs to the DD-Net. The improvement in image quality from
the DD-Net method could be barely satisfactory, if the input
images from FBP reconstruction exhibit severe artifacts due
to the loss of a large amount of information from the missing
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views in a sparse-view CT scan. In the future, the missing
information from a sparse-view CT scan could be compensated
to a certain extent by a big and relevant training dataset
(e.g. same organ or same diseases). The training dataset could
somehow make up the missing information in one sparse-view
CT scan by the complementary information from the many
other CT scans in the training dataset. However, the detailed
improvement and associated computing cost deserve a thor-
ough study.

In conclusion, leveraging the advantages of DenseNet
and deconvolution, we proposed a new DL neural network
based reconstruction method (DD-Net) for sparse-view CT.
The advantage of the DD-Net lies in the fact that it uses feature
reuse, deconvolution, and shortcut connections to increase the
depth and expressive ability of the neural network, to effec-
tively restore image details, and to accelerate the training
speed of the neural network. Results from the experiments
using two sets of CT data from different parts of human body
demonstrated the great potential of this technique in improving
the quality of CT images from sparse-view CT. The proposed
method could lead to high-quality CT imaging with faster
imaging speed and lower radiation dose.
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